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Wave propagation in a thermo piezoelectric membrane immersed in an infinite fluid
medium is discussed using three-dimensional linear theory of elasticity and thermos
piezoelectricity. Three displacement potential functions are introduced to uncouple the
equations of motion, heat and electric conduction equations. The frequency equations
are obtained for longitudinal and flexural modes at the solid fluid interfacial boundary
conditions. The numerical results are analyzed for PZT-4 material and the computed
stress, strain, electric displacement and temperature distribution are presented in the
form of dispersion curves and its characteristics are studied.

Keywords: Dispersion waves in piezoelectric plates, solid-fluid interaction, thermal cylin-
ders/plates, temperature sensors.

1. Introduction

Piezoelectric and thermo piezo electric coupling form plays a major role in construc-
tion engineering as important component of structures. The intelligent structure
system have thermo piezo component for self-monitoring and self-controlling pro-
cess. The electro-elastic materials with thermal environment has many applications
in sensors and actuators as magnetic probes, electric packing, hydrophones, medi-
cal, ultrasonic image processing due to the transition of energy in thermo-electro-
mechanical conversion.

The propagation of compressional elastic waves along an anisotropic circular
cylinder with hexagonal symmetry was first studied by Morse [1]. Bhimaraddi [2]
developed a higher order theory for the free vibration analysis of circular cylindri-
cal shell. Zhang [3] investigated the parametric analysis of frequency of rotating
laminated composite cylindrical shell using wave propagation approach. The gener-
alized theory of thermoelasticity was developed by Lord and Shulman [4] involving
one relaxation time for isotropic homogeneous media, which is called the first gen-
eralization to the coupled theory of elasticity. These equations determine the finite
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speeds of propagation of heat and displacement distributions, the corresponding
equations for an isotropic case were obtained by Dhaliwal and Sheried [5].

Thermo-piezo-elastic field which will give piezo thermo elastic components give
an idea to sense the thermo-mechanical disturbance coming from perturbed electric
potential, to alter the response of the structure by applied electric fields. The
thermo-piezo-electric theory was first proposed by Mindlin [6], later he derived the
governing equations of a thermo-piezo-electric plate.

Thermo-piezo-electric materials and its laws for physical characters have been
investigated by Nowacki [7, 8]. In order to achieve the finite thermal signal speed,
Chandrasekhariah [9,10] analyzed the generalized theory of thermo piezo elasticity
considering the thermal relaxation times in the analytical formulation [11]. Tang
and Xu [12] developed a dynamical equation in general form for the plate composed
of anisotropic material which have mechanical, thermal and electrical influence and
they examined the forces acting on a thermo piezo elastic laminated plate and har-
monic responses to distribution of temperature and electrical effect. The frequency
shift of a vibration of linear piezo electric material with heat conduction by using
perturbation methods were interpreted by Yang and Batra [13]. An analytical so-
lution is achieved by Peyman et al. [14] for a piezolaminated rectangular plate with
arbitrary clamped and simply supported boundary conditions under thermo-electro-
mechanical loadings. The axisymmetric snap-through behavior of Piezo-FGM shal-
low clamped spherical shells under thermo-electro-mechanical loading was discussed
by Boroujerdy and Eslami [15].

The natural frequencies of a thin clamped circular plate in an aperture of an
infinite rigid plane wall coupled with water was investigated by Lamb [16] based
on the assumption that the wet mode shapes are almost the same as those in
vacuum. Lindholm et al. [17] reported the natural frequencies of cantilever plates
in air and in water, whereas they applied strip theory to evaluate fluid actions.
Added mass of thin rectangular plates in infinite fluid was obtained by Meyerhoff
[18] and dipole singularities were employed to model the potential flow around a
flat rectangular plate. A piecewise division is used by Kwak [19] to investigate
the free vibrations of rectangular plates in contact with unbounded water on one
side, whereas beam functions were used as admissible functions. Haddara and
Cao [20] investigated dynamic responses of rectangular plates immersed in fluid.
An approximate expression for the evaluation of the modal added mass was derived
for cantilever and SFSF rectangular plates and the numerical results were verified
by the experimental ones. The natural frequencies of annular plates in contact
with a fluid on one side were theoretically obtained by Amabili et al. [21] using
the added mass approach, whereas the coupled fluid–structure system was solved
by adopting the Hankel transform. The wave propagation in a generalized thermo
elastic plate immersed in fluid was analyzed by Selvamani and Ponnusamy [22].
Later, Selvamani and Ponnusamy [23] have studied the dynamic response of a solid
Bar of cardioidal cross-sections immersed in an inviscid fluid using Fourier expansion
collocation method. Recently, Selvamani [24] has studied the dispersion analysis
in a fluid filled and immersed transversely isotropic thermo-electro-elastic hollow
cylinder using the Bessel function in frequency equation.

In this paper, wave propagation in a anisotropic thermo piezo electric mem-
brane immersed in an inviscid fluid is studied. The displacement functions to rep-
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resent three displacement components on the basis of three-dimensional generalized
piezothermo elasticity are considered. The frequency equations are obtained for
longitudinal and flexural modes at the solid fluid interfacial boundary conditions.
The numerical results are analyzed for PZT-4 material and the computed stress,
strain, electric displacement and temperature distribution are presented in the form
of dispersion curves.

2. Model of the Problem

We consider a rectangular thermo piezo electric membrane of thickness 2h. In
Cartesian coordinates, the motion takes place in XZ plane in which the mid plane
is the origin of the membrane and Z axis is perpendicular to the mid plane. The
complete governing equations that explains the behavior of thermo piezoelectric
membrane have been considered from Mindlin [6].

Sxx = c11u, x + c13w,z + e31φ,z − β1T
Syy = c12u, x + c13w,z + e31φ,z − β1T
Szz = c13u, x + c33w,z + e33φ,z − β3T

Sxy = 0, Syz = 0, Sxz = c44(w, x + u, z) + e15φ,x (1)

Dx = e15(w, x + u, z)− ∈11 φ,x
Dy = 0Dz = e31u, x + e33w, z − ε33φ,z + p3Tσ = β1u, x + β3w, z − p3φ,z + dT

where Sxx, Syy, Szz, Sxy, Syz, Sxz are the strain components, u,w are the dis-
placement components, c11, c12, c13, c33 are the elastic constants, e31, e33 are the
piezoelectric constants, ∈11, ∈33 are the dielectric constants, T is the temperature
change about the equilibrium temperature T0, p3 is the pyroelectric constant, β1, β3
are the thermal expansion coefficients, K1, K3 are the thermal conductivity, ρ is
the mass density. The equations of motion for hexagonal (6 mm) class are derived
as follows

c11uxx + (c13c44)wxz + c44uzz + (e31 + e15)φxz + (e31 + e15)Vrz = ρutt

c44wxx + c33wxz + (c13 + c44)uzx + e15φxx + e33φzz = ρwtt

e15wxx + (e15 + e31)uzx + ε11φxx + e33wzz − ε33φzz = 0 (2)

K11Txx +K33Tzz = T0 (β1uxt + β3wxt − P3φzt + dtt)

3. Solutions of the Field Equation

The harmonic wave solution of the above equation has been arrived by taking the
displacement component with respect to the potential derivatives and are considered
from Paul [24] as follows

u = U(z) sin kx eiωt

w = W (z) cos kx eiω t

ϕ = (c44/e33)ϕ(z) cos kx eiω t, (3)

T =
(
c44//β3

)
kT (z) cos kxeiω t
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where i =
√
−1, k is the wave number, ω is the angular frequency, U (z), W (z),

φ (z) and T (z) are the displacement potentials. By introducing the dimensionless
quantities such as x = rh, ε = kh, cij =

cij
c44

, cij =
eij
e33

, εij = ε11
e33

, p = p1c44
β3e33

,

k−2
β =

(εij)c44
ε233

, kj = 1
h2

c44
β2
3pT0

kij and substituting Eq. (3) in Eq. (2), we obtain

d2U

dr2
− ε2c11u− (1 + c13)ε

dW

dr
− (e31 + e15)ε

dϕ

dr
= −(ch)2u

(1 + c13)ε
dU

dr
+ c13

d2W

dr2
− ε2W − ε215ε2 +

d2ϕ

dr2
− εdT

dr
= −(ch)2W,

(e31 + e15)ε
dU

dr
− ε2e31W +

d2W

dr2
− k−2

33

d2ϕ

dr2
+ k−2

13 ε
2ϕ = 0 (4)

βεU +
dW

dr
− pdϕ

dr
+ ε

[
d+ (k3

d2

dr2
− k1ε2)i

]
T = 0,

Eq. (4) can be written as the vanishing determinant form∣∣∣∣∣∣∣∣
d2

dr2
(ch2 − ε2c11) − (1 + c13) ε

d
dr (e31 + e15)ε

du
dr βε2

(1 + c13) ε
d
dr c33

d2

dr2
(ch2 − ε2) d2

dr2
− e15ε

2 ε ddr

(e31 + e15) ε
d
dr

d2

dr2

(
−e15ε2

)
k−2
33

(
e11ε

2 − d2

dr2

)
εp ddr

βε d
dr p ddr ε

(
d+ i

(
k3

d2

dr2
− k1ε

2
))
∣∣∣∣∣∣∣∣ ·

· (U,W,ϕ, T ) = 0 (5)

Evaluating the determinant given in Eq. (5), we obtain a differential equation
of the form (

d8

dr8
+A

d6

dr6
+B

d4

dr4
+ C

d2

dr2
+D

)
(U,W,ϕ, T ) = 0 (6)

where

A = g9
(
g7c33 + 2g6 − g1g10c33−g1 − g22g10 − 2g2g3 − g23c33 − g9g5g10

)
+
[
g8(−g10c33−1) + p−2c33 − g7g5g10 + 2p− g10

]
/ [−g9(g10c33 + 1)]

B =
[
g8
(
g7c33 + 2g6 − g1g10c33−g1 − g22g10 − 2g2g3 − g23c33

)
+g9

(
g5g7 − g26 + g1g7c33 − g1g10g5 + 2g1g6 + g22g7

+2g2g6g3 + g23g5
)

+ p (g5p+ g1pc33 + 2g1 − 2g6

+g22p+ 2g2g4 + 2g2g3 − 2g3g4c33
)
g7 − g1g10 − 2g2g4g10

+g23 − 2g3g4 + g24g10c33 + g24
]
/ [−g9(g10c33 + 1)] (7)

C =
[
g8
(
g5g7 − g26 + g1g7c33 − g1g5g10 + 2g1g6 + g22g7 + 2g2g3g6 + g23g5

+g9(g1g5g7 − g1g26 + g1(g5
)
p−2 + g7 − 2pg6

+g3(−g4g5p+ 2g4g6 − pg4g5) + g4(−g2g6p+ 2g1g6 + 2g2g7

−pg2g6 − g4g5g10 − 2g4g6)] / [−g9(g10c33 + 1)] ,

D = (g1g8 − g24)(g5g7 − g26)/ [−g9(g10c33 + 1)]
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in which

g1 = (ch)2 − ε2c11 g2 = (1 + c13)ε g3 = (e31 + e15)ε

g4 = βε2 g5 = (ch)2 − ε2 g6 = ε2e11 g7 =
ε2e11
k233

(8)

g8 =
ρcuc44

β2
3T0 − ik1ε2

g9 = ik3 g10 =
1

k233

Solving the Eq. (6), we get solutions for a symmetric mode as

U =

4∑
i=1

Ai cosh (pir) ,

W =

4∑
i=1

Aiqi sinh (pir) , (9)

ϕ =

4∑
i=1

Aiei cosh (pir)

T =

4∑
i=1

Airi sinh (pir) , (10)

Here (αia)
2

= 0, p2i > 0, (i = 1, 2, 3, 4) are the roots of the algebraic equation

p8 +Ap6 +Bp4 + Cp2 +D = 0 (11)

The constants qi, ei, ri defined in the Eq. (12) can be calculated from the equations

(1 + c13)εpiqi − (e31 + e15)εpiei + βε2ri +
{
p2i
[
(ch)2 − ε2c11

]}
= 0{

c33p
2
i +

[
(ch)2 − ε2

]}
qi +

(
p2i − e15ε2

)
ei − εpiri (1 + c13) εpi = 0 (12)(

p2i − e11ε2
)
qi +

[
ε2
(
e11 − p2i

)
/k233

]
ei + εppiri + ((e31 + e15)εpi = 0.

4. Formulation of the Fluid

The fluid pressure acting upon the structure can be expressed as a function of
acceleration. The fluid force matrices are superimposed onto the structural matrices
to form the dynamic equations of a coupled fluid-structure system. Linear potential
flow is applied to describe the fluid effect that leads to the fluid dynamic forces.
The mathematical model is based on the following assumptions:

(i) the fluid flow is potential;

(ii) vibration is linear;

(iii) since the flow is inviscid, there is no shear and the fluid pressure is purely
normal to the plate wall;

(iv) the fluid is incompressible.
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Based on the aforementioned hypothesis the potential function, which satisfies
the Laplace equation, is expressed in the Cartesian coordinate system as:

∂φ

∂ z
= −1

g

∂2φ

∂ t2
(13)

The fluid pressure at solid fluid interface is given by

p = −pf ∂φ
∂ t

(14)

The impermeability condition of the structure surface requires that the out-
of-plane velocity component of the fluid on the plate surface should match the
instantaneous rate of change of the plate displacement in the transversal direction.(

∂φ

∂z

)
z=0

=
∂W

∂ t
(15)

Substituting Eq. (15) in to Eq. (14) we can get the following potential function

φ(x, y, z, t) =
1

µ

(
eµz + Ce−µ(z−2h)

1− Ce2µh

)
(16)

where

C =
(gµ− ω2)

(gµ+ ω2)

Here, g is the acceleration due to gravity, By substituting Eq. (16) in (14) along
with (15), the acoustic pressure for the fluid at z = h1 , h2 can be expressed as

p = −ρ
f

µ

(
1 + Ce2µz

1− Ce2µz

)
∂2W

∂t2
(17)

5. Boundary Conditions and Frequency Equations

In this problem, the free vibration of anisotropic thermo piezoelectric membrane
immersed in fluid is considered. Interaction between the fluid and the structure
can be discussed by the coupling of the equation of motion of the structure and the
equation of motion of the fluid. The boundary conditions can be written as

c33εUx + c33W, r + ϕ, r − T = p

U, r − εW − e15εϕ = uf (18)

ϕ = 0, T = 0

Substituting the solutions given in the Eqs. (9), (10) and (17) in the boundary
condition in the Eq. (18), we obtain a system of five linear algebraic equation as
follows:

[A] {X} = {0} (19)

where [A] is a 4×4 matrix of unknown wave amplitudes, and {X} is an 4×1 column
vector of the unknown amplitude coefficients A1, A2, A3, A4. The solution of Eq.
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(19) is nontrivial when the determinant of the coefficient of the wave amplitudes
{X} vanishes, that is

|A| = 0 (20)

The components in the above determinant is defined as follows

|aij | = 0, i, j = 1, 2, 3, 4, (21)

where
aij = (c33ε+ c33siqj + siej − rj)f(sj)

−ω2 ρ
f

µ

(
gµ+ω2+(gµ−ω2)e2µz

gµ+ω2−(gµ−ω2)e2µz

)
g(sj)

a2j = sj − εqje15εej)g(sj),

a3j = ejg(sj),

a4j = rjf(sj).

6. Numerical Results and Discussion

The frequency equation given in Eq. (20) is transcendental in nature with unknown
frequency and wavenumber. The solutions of the frequency equation are obtained
numerically by fixing the wave number. The material chosen for the numerical
calculation is PZT-4. The material properties of PZT-4 is taken from Sharma et
al. [25].

c11 = 13.9× 1010Nm−2, c12 = 7.78× 1010Nm−2, c13 = 7.43× 1010Nm−2,

c33 = 11.5× 1010Nm−2, β1 = 1.52× 106NK−1m−2, β3 = 1.53× 106NK−1m−2,

T0 = 298K, cν = 420Jkg−1K−1, p3 = −452× 10−6CK−1m−2,

K1 = K3 = 1.5Wm−1K−1, e31 = −5.2Cm−2, e33 = 15.1Cm−2, e15 = 12.7Cm−2,

ε11 = 6.46× 10−9C2N−1m−2, ε33 = 5.62× 10−9C2N−1m−2, ρ = 7500kgm−2.

and for fluid the density ρf = 1000 kgm−3, phase velocity c = 1500 ms−1 and used
for the numerical calculations. Here, the longitudinal and flexural modes of the
vibration have been considered by choosing respectively n = 0 and n = 1.

6.1. Dispersion Curves

The results of longitudinal and flexural modes are plotted in the form of dispersion
curves. The notation used in the figures, namely Lm, Fsm and Fasm respectively
denotes the longitudinal mode, flexural symmetric mode and flexural anti-symmetric
mode.

The dispersion curves are drawn in Figs. 1 and 2 for variation of normal stress
Szz versus the thickness of the thermo piezo electric membrane in space and water.
From the Fig. 1, it is observed that the normal stress is increasing with respect to its
thickness for the different vibration modes such as longitudinal, flexural symmetric
and flexural anti-symmetric. Fig. 2 experiences some oscillation in the wave trend
due to the added mass effect of fluid. A comparison is made between the normal
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Figure 1 Variation of normal stress Szz vs. thickness h of a thermo piezoelectric membrane in
space

Figure 2 Variation of normal stress Szz vs. thickness h of a thermo piezoelectric membrane in
water

strain and the thickness of the membrane for longitudinal and flexural modes of
vibration is respectively shown in the Figs. 3 and 4. From the Figs. 3 and 4,
it is clear that, the lower range of thickness the normal strain attain maximum
in both cases of membrane in space and in water, after that, it starts decreases.
The merging of points between the vibration modes of strain shows that, there is a
energy transfer between the longitudinal and flexural modes.

Figures 5 and 6 demonstrate the dispersion curves for the electric displacement
of thermo piezo electric membrane with the thickness in case of with fluid (immersed
in water) and without fluid (in space). From the Figs. 5 and 6, it is observed that
the electric displacement having oscillating nature as the increase in thickness in
three vibration modes. In Fig. 6, the electric displacement is in wave propagation
trend in all the modes of vibration.

A dispersion curve is drawn to compare the temperature distribution of longitu-
dinal and flexural symmetric and anti-symmetric modes of vibration for a thermo-
piezoelectric membrane in space and water is shown respectively in the Figs. 7
and 8. From the Figs. 7 and 8, it is clear that the temperature distributions are
varies linearly and having peak values in some range of thickness. In Fig. 8, the
temperature distribution is getting peak values in the lower range of thickness.
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Figure 3 Variation of normal strain ezz versus thickness h of a thermo piezoelectric membrane
in space

Figure 4 Variation of normal strain ezz versus thickness h of a thermo piezoelectric membrane
in water

Figure 5 Variation of electric displacement Dz versus thickness h of a thermo piezoelectric mem-
brane in space
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Figure 6 Variation of electric displacement Dz versus thickness h of a thermo piezoelectric mem-
brane in water

Figure 7 Variation of temperature distribution T versus thickness h of a thermo piezoelectric
membrane in space

Figure 8 Variation of temperature distribution T versus thickness h of a thermo piezoelectric
membrane in water

7. Conclusions

This study demonstrates the wave propagation model in an anisotropic thermo piezo
electric membrane immersed in an infinite inviscid fluid. The displacement functions
to represent three displacement components on the basis of three-dimensional gene-
ralized thermo piezo elasticity are considered. The frequency equations are obtained
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for longitudinal and flexural modes at the solid fluid interfacial boundary conditions.
The numerical results are analyzed for PZT-4 material and the computed stress,
strain, electric displacement and temperature distribution are presented in the form
of dispersion curves. The values of all physical quantity that are discussed here
having significant variations due to the surrounding fluid medium and also the
further interacting field. This method is applicable to wide range of problems in
hydrodynamics, thermo piezo elasticity.
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